

Analytic Techniques Utilised for Drug Checking

Challenges and Current Developments

Anton Luf Head of checkit! Laboratory Clinical Institute for Laboratory Medicine Medical University of Vienna

MEDIZINISCHE UNIVERSITÄT WIEN

checkit!

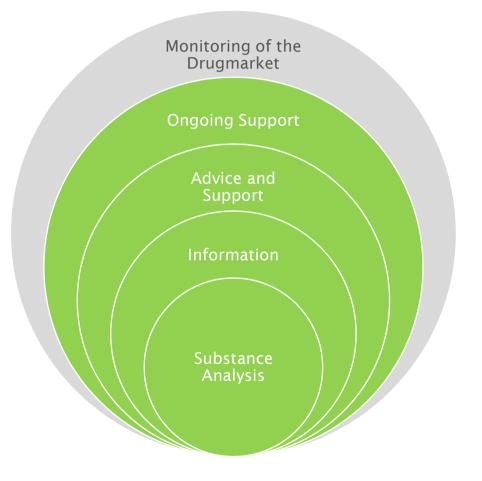
Integrated Drug Checking (IDC)

Analytical & toxicological measures

- Substance analysis
- Individual risk categorisation

checkit!

- Information
- Advice & support



source: © Boran Ilic Fotografie

Integrated Drug Checking (IDC)

Requirements for comprehensive individual risk assessment and effective harm reduction:

- Identity of pharmacologically active substances
- Quantitative composition of the drug (dosage)
- Fast analysis and presentation of results at the venue

Source: checkit!, Suchthilfe Wien gGmbH

Requirements and challenges for mobile Drug Checking (DC)

- Mobile use
- Robustness
- Detection of all pharmacologically active components esp. in substance mixtures
- Low detection limits
- Quantitative determination

- Wide (quantitative) measuring range
- High sample throughput
- Identification of unknown substances
- Discrimination between isomers (e.g. 2-MMC, 3-MMC, 4-MMC)
- Allows adaptations to market changes

Rational acquisition- & operating-costs

Reagent testing:

Source: http://izutti.com/blog/astonishing-sci-fiapartment-design-by-a-cero/

Benefits: Fast and easy to use, low costs

Limitations: High risk of misinterpretation & false negative results

Mobile use

Robustness

- Detection of all pharmacologically active components (substance mixtures)
- - Low detection limits

- Quantitative determination
- High sample throughput

 - Identification of unknown substances
- Discriminate between isomers X (e.g. 2-MMC, 3-MMC, 4-MMC)
 - - Allows adaptations to market changes

TLC (Thin Layer Chromatography)

Source: http://www.chemgapedia.de

Benefits: Low costs & separation of substances, combination with Direct MS possible

\checkmark	Mobile use
\checkmark	Robustness
×	Detection of all pharmacologically active components (substance mixtures)
\bigotimes	Low detection limits
	Quantitative determination
\checkmark	High sample throughput
$\boldsymbol{\times}$	Identification of unknown substances
	Discriminate between isomers (e.g. 2-MMC, 3-MMC, 4-MMC)
\checkmark	Allows adaptations to market changes

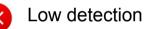
FTIR (Fourier-Transform Infrared Spectroscopy)

Source: https://www.bruker.com

Source: https://www.thermofisher.com

Benefits: No sample preparation & high throughput

Limitations: Deciphering substance mixtures



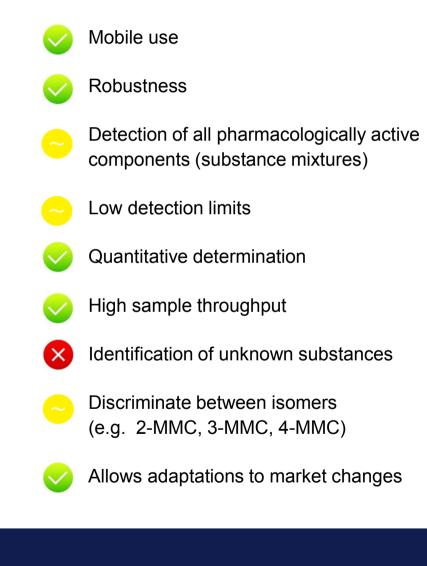
Mobile use

Robustness

Detection of all pharmacologically active components (substance mixtures)

- Low detection limits
- Quantitative determination
- High sample throughput
- Identification of unknown substances
- Discriminate between isomers (e.g. 2-MMC, 3-MMC, 4-MMC)

Allows adaptations to market changes



UHPLC-UV

Ultra High Performance Liquid Chromatography - Ultra Violet

Source: checkit! Suchthilfe Wien gGmbH

UHPLC-MS

Ultra High Performance Liquid Chromatography-Mass spectrometry

Source: checkit! Suchthilfe Wien gGmbH

Benefits: High discrimination power, identification of unknown substances possible, low detection limits

Mobile use

- Robustness
- ~
 - Detection of all pharmacologically active components (substance mixtures)

checkit!

Low detection limits

- Quantitative determination
- High sample throughput

 - Identification of unknown substances

Discriminate between isomers (e.g. 2-MMC, 3-MMC, 4-MMC)

Allows adaptations to market changes

GC-MS (Gas Chromatography -Mass spectrometry)

Source: http://www.bruker.com

Benefits: Low detection limits & Identification of unknown substances

Limitations: Elaborate sample preparation, not for thermally unstable compounds

Direct masspectrometric techniques (DESI, MALDI, DART, etc.)

Source: https://www.ionsense.com

Benefits: Short analysis time & low detection limits

Limitations: no separation (substance mixtures)

Mobile use

- Robustness
- Detection of all pharmacologically active components (substance mixtures)

- Low detection limits
- Quantitative determination
- High sample throughput
 - Identification of unknown substances
- **Discrimination between isomers** X (e.g. 2-MMC, 3-MMC, 4-MMC)
- Allows adaptations to market changes

HR-MSⁿ (High Resolution Mass Spectrometry)

Sources: checkit! Suchthilfe Wien gGmbH

Benefits: High amount of structural information & very low detection limits

Limitations: not for mobile use (yet)

Mobile use

- Robustness
- Detection of all pharmacologically active components

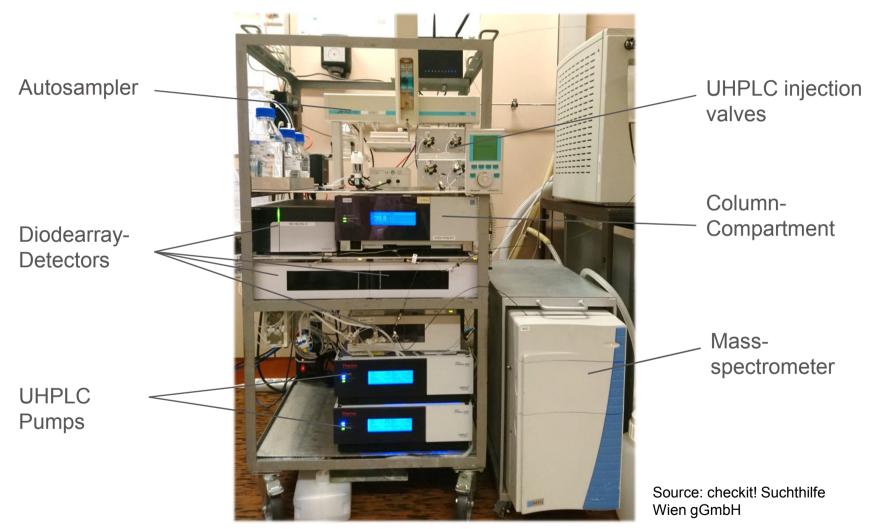
Low detection limits

- Quantitative determination
- **S** I
 - High sample throughput
 - Identification of unknown substances

Discriminate between isomers (e.g. 2-MMC, 3-MMC, 4-MMC)

Allows adaptations to market changes

	Reagent Testing	TLC	FTIR	(U)HPLC- UV	(U)HPLC- MS	GC-MS	Direct MS	HR-MS
Mobile use	+	+	+	+	+	+	+	-
Robustness	+	+	+	+	~	+	~	-
Detection of all components	-	-	-	~	~	~	~	~
Low detection limits	-	-	-	~	+	+	+	+
Quantitative determination	-	~	~	+	+	+	~	+
High sample throughput	+	+	+	+	+	~	+	+
Identification of unknowns	-	-	~	-	~	+	+	+
Discrimination between isomers	-	~	~	~	~	~	-	~
Adaptability to market changes	~	+	+	+	+	+	+	+
Costs	+	+	~	~	-	-	-	-


checkit! Current challenges for DC 2018 UHPLC-DAD-MS & ✓ Increasing number of different new MALDI-IT-MS psychoactive substances (NPS) on the market 2012 ✓ High complexity of samples HPLC-DAD-MS ✓ High variability of dosage 2008 ✓ Appearance of highly potent HPLC-DAD substances 2002 HPLC-UV 1997 Remedy

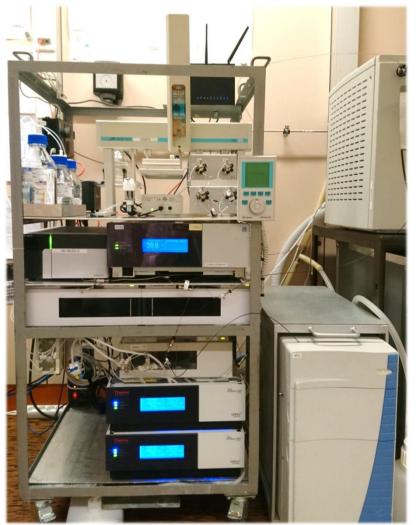
checkit!

Mobile DC Methods checkit!

Mobile UHPLC-DAD-MS System

checkit!

Mobile DC Methods checkit!


Source: checkit! Suchthilfe Wien gGmbH

Source: checkit! Suchthilfe Wien gGmbH

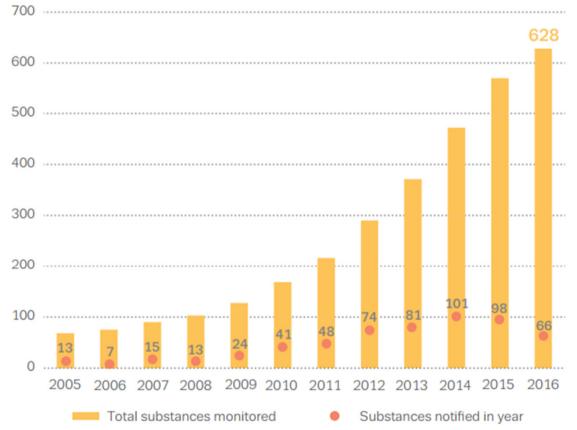
Mobile DC Methods checkit!

Source: checkit! Suchthilfe Wien gGmbH

Specifications

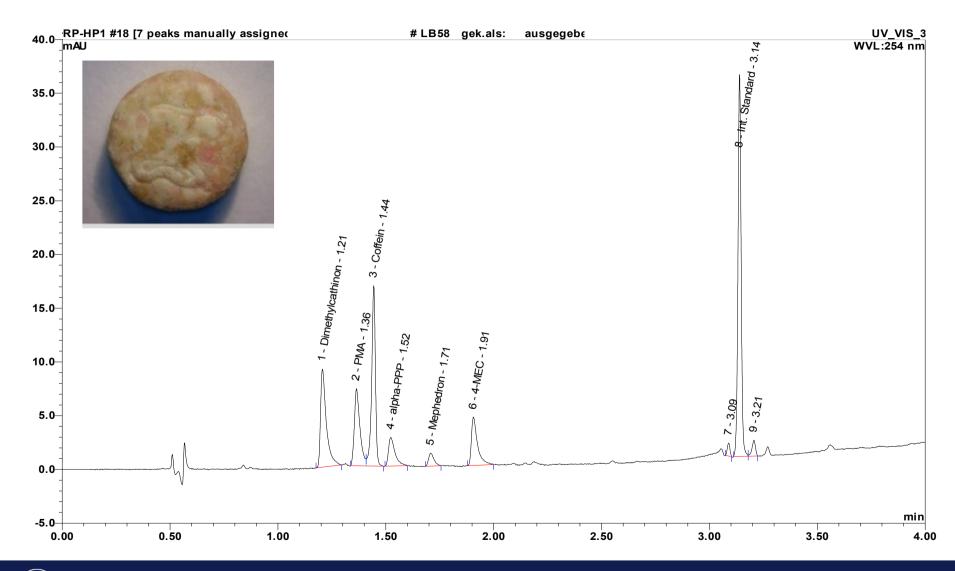
- ✓ Four parallel UHPLC-DAD-systems
- $\checkmark~$ One of them coupled with MS
- ✓ Automated sample preparation
- ✓ Runtime per system: less than 10 min
- ✓ Throughput: up to 40 samples/h
- ✓ Screening for over 300 different substances
- ✓ Currently up to 58 quantitative parameters

Increasing number of NPS


Substance	First identified in Vienna	Substance	First identified In Vienna
mCPP	2006	Dibutylone	2014
TFmPP	2007	Pentylone	2014
4-Fluoramphetamine	2009	4-chloromethamphetamin	2015
pFPP	2009	4-CMC	2015
Butylone	2009	4-Methylpentedrone	2015
Methylone	2009	5-MAPB	2015
Mephedrone	2010	bk-MDDMA	2015
2С-Е	2011	4-EMC	2015
4-MEC	2011	3-MMC	2015
2C-I	2011	3-MeO-PCP	2016
MPA	2011	4-CEC	2016
Ethylphenidat	2011	3-FPM	2016
Flephedrone	2011	4-Fluormethamphetamine	2016
DOC	2012	4-Methylmethamphetamin	2016
25B-NBOMe	2013	Deschloroketamine	2016
25C-NBOMe	2013	Furanylfentanyl	2016
25I-NBOMe	2013	TH-PVP	2016
5-MeO-MiPT	2013	МРНР	2016
25H-NBOMe	2014	N-Ethylhexedrone	2016
2-MXP	2014	N-Ethylpentylone	2016

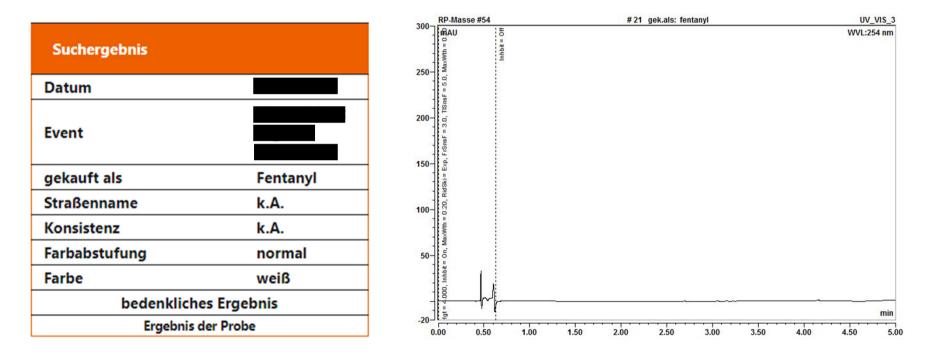
Increasing number of NPS

Number of new psychoactive substances formally notified for the first time in Europe (dots) and total number of new psychoactive substances monitored by the EMCDDA, 2005–16 (bars)



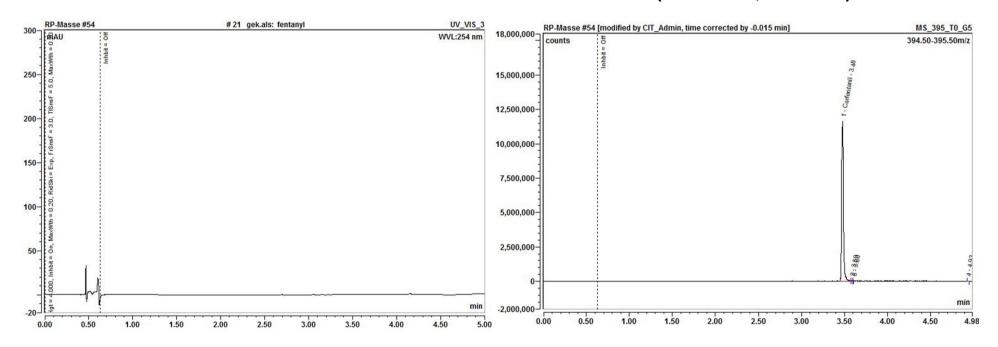
Source: EMCDDA-Europol 2016, Annual Report on the implementation of Council Decision 2005/387/JHA

Complexity of samples



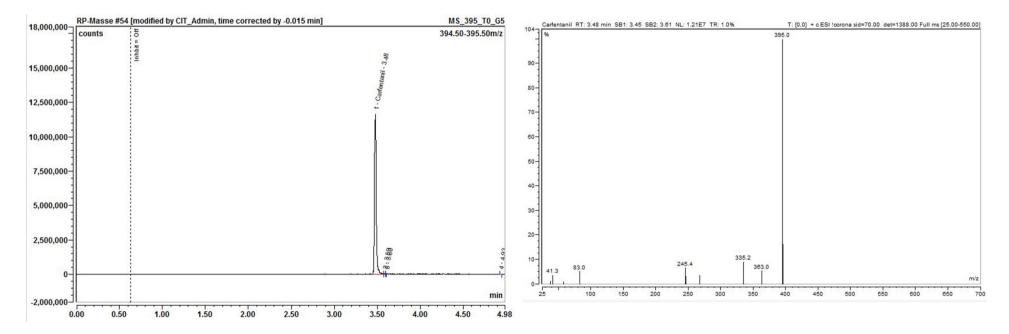
MEDIZINISCHE UNIVERSITÄT WIEN

Sample submitted as: Fentanyl

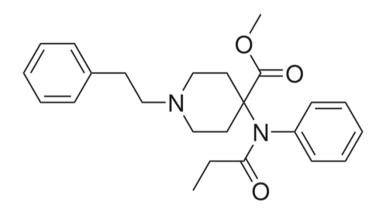

UHPLC-UV chromatogram @ 254 nm

UHPLC-UV chromatogram @ 254 nm

UHPLC-MS chromatogram (SIM scan; m/z 395)



UHPLC-MS chromatogram (SIM scan m/z 395)

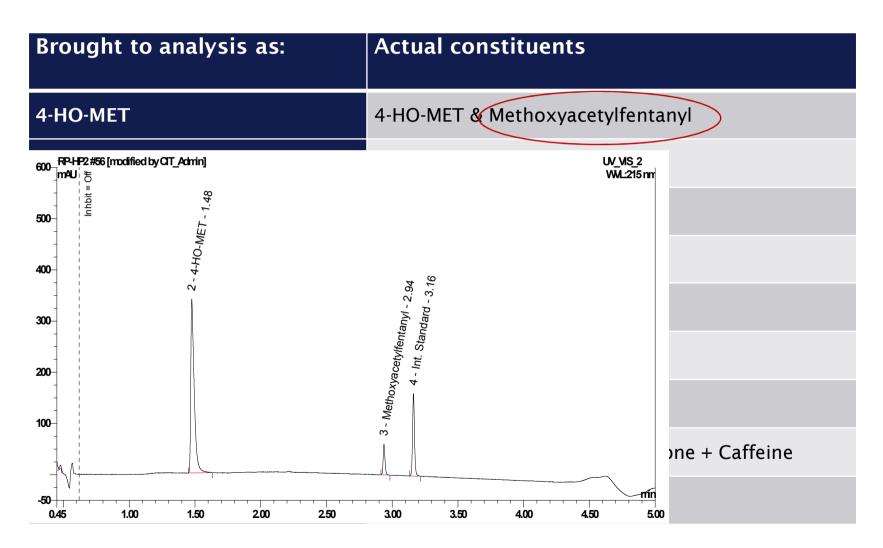

Mass spectrum @ RT 3.48 min

Carfentanil

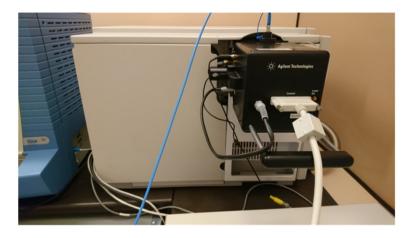
Highly potent synthetic opioid (4.000 to 10.000 fold more potent than morphine)

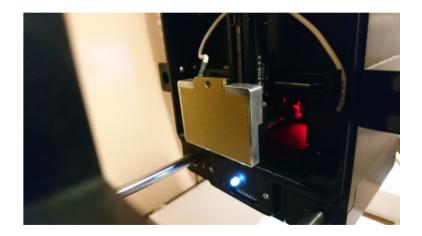
4[(1-Oxopropyl)-phenylamino]-1-(2-phenylethyl)-4-piperidin-carbonsäuremethylester

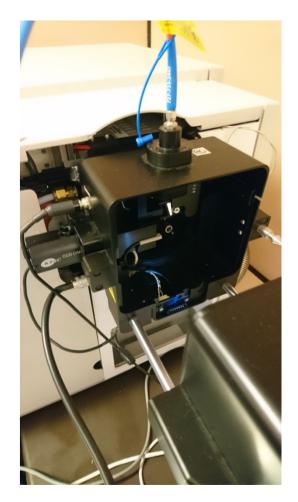
Source: http://www.huffingtonpost.ca/2017/05/02/fentanyl-carfentanil_n_16397030.html



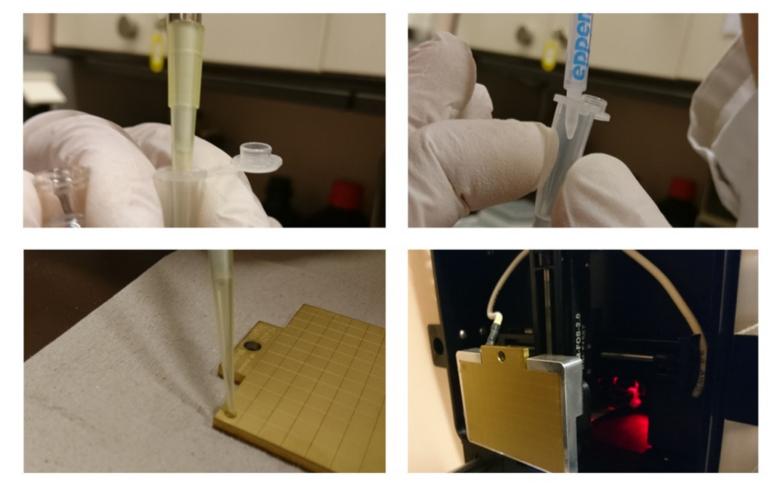
Brought to analysis as:	Actual constituents
4-HO-MET	4-HO-MET & Methoxyacetylfentanyl
Fentanyl	Carfentanil
Mephedrone / 4-MMC	4-CMC + 4-CEC
unknown Research Chemical	U-47,700
Rescuren enemear	U-47,700
	U-47,700
	Cyclopentylfentanyl
	Ethylphenidat + N-Ethylbuphedrone + Caffeine
	4-CEC + 4-CMC + 3-MMC







Direct MS: MALDI-IT-MSⁿ



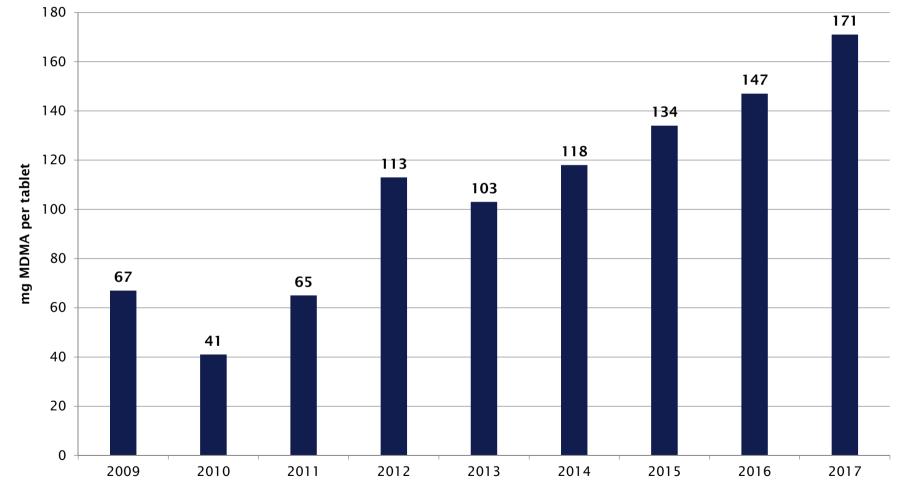
Direct MS: MALDI-IT-MSⁿ

Direct MS

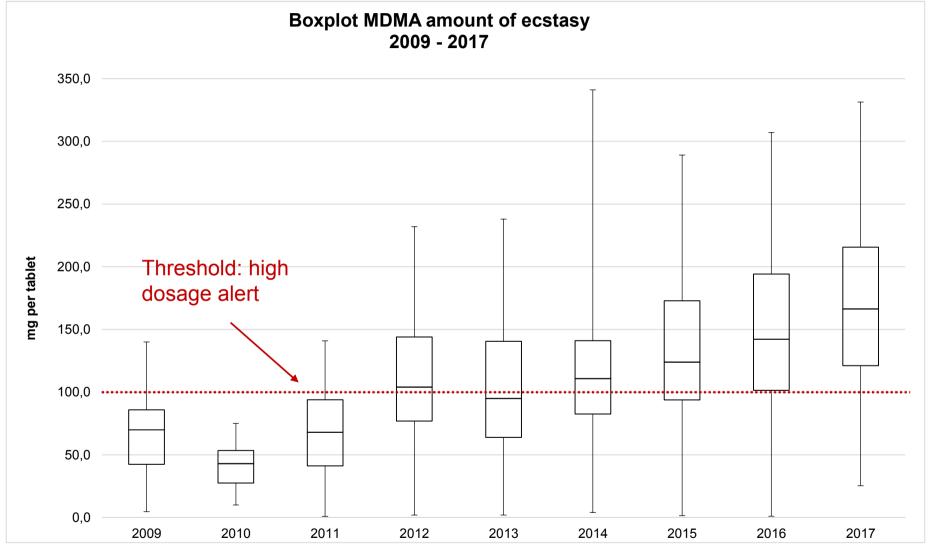
		UV	MS	(MALDI)
Benefits of complementary MALDI-IT-MS ⁿ analysis:	Mobile use	+	+	(+)*
Additional structural information	Robustness	+	~	~
Minimum sample preparation	Detection of all components	~	~	~
 Instant analysis (60 sec/sample) 	Low detection limits	~	+	+
 Fast screening for synthetic opioids 	High sample throughput	+	~	+
Very low detection limits	Identification of unknowns	-	+	+
	Discrimination between isomers	~	~	-
	Adaptability to market changes	+	+	+
	Costs	~	-	-

(U)HPLC-

(U)HPLC-


* Proof of concept phase

High variability of dosage



High variability of dosage

MEDIZINISCHE UNIVERSITÄT WIEN

Mobile Drug Checking Conclusions

- Hardly any analytical technique applied alone meets all the requirements for mobile DC
- A combination of complementary methods increases the validity and thus the safety of the results
- Quantitative measurement is as important as identification of substances
- Constant method development is necessary to adapt to market changes

Thank you!

